skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barley, Anthony J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carstens, Bryan (Ed.)
    Gene flow between diverging lineages challenges the resolution of species boundaries and the understanding of evolutionary history in recent radiations. Here, we integrate phylogenetic and coalescent tools to resolve reticulate patterns of diversification and use a perspective focused on evolutionary mechanisms to distinguish interspecific and intraspecific taxonomic variation. We use this approach to resolve the systematics for one of the most intensively studied but difficult to understand groups of reptiles: the spotted whiptail lizards of the genus Aspidoscelis (A. gularis complex). Whiptails contain the largest number of unisexual species known within any vertebrate group and the spotted whiptail complex has played a key role in the generation of this diversity through hybrid speciation. Understanding lineage boundaries and the evolutionary history of divergence and reticulation within this group is therefore key to understanding the generation of unisexual diversity in whiptails. Despite this importance, long-standing confusion about their systematics has impeded understanding of which gonochoristic species have contributed to the formation of unisexual lineages. Using reduced representation genomic data, we resolve patterns of divergence and gene flow within the spotted whiptails and clarify patterns of hybrid speciation. We find evidence that biogeographically structured ecological and environmental variation has been important in morphological and genetic diversification, as well as the maintenance of species boundaries in this system. Our study elucidates how gene flow among lineages and the continuous nature of speciation can bias the practice of species delimitation and lead taxonomists operating under different frameworks to different conclusions (here we propose that a 2 species arrangement best reflects our current understanding). In doing so, this study provides conceptual and methodological insights into approaches to resolving diversification patterns and species boundaries in rapid radiations with complex histories, as well as long-standing taxonomic challenges in the field of systematic biology. 
    more » « less
  2. Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data. This has led to the proposal that second polar body fusion following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show that FP occurring in the gonochoristicAspidoscelisspeciesA. marmoratusandA. arizonaeresults in genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying mechanism of restoration. Instead, a high-quality reference genome forA. marmoratusand analysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the widely held belief that females need to be isolated from males to undergo FP, females housed with conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous development. In addition, offspring arising from both fertilized eggs and parthenogenetic development were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity exposes the genetic load and explains the high rate of congenital malformations and embryonic mortality associated with FP in many species. Conversely, for animals that develop normally, FP could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single generation. 
    more » « less
  3. Evolutionary time since divergence predicts outcomes of hybridization in a diverse lizard clade. 
    more » « less
  4. Abstract Unisexual vertebrates typically form through hybridization events between sexual species in which reproductive mode transitions occur in the hybrid offspring. This evolutionary history is thought to have important consequences for the ecology of unisexual lineages and their interactions with congeners in natural communities. However, these consequences have proven challenging to study owing to uncertainty about patterns of population genetic diversity in unisexual lineages. Of particular interest is resolving the contribution of historical hybridization events versus post formational mutation to patterns of genetic diversity in nature. Here we use restriction site associated DNA genotyping to evaluate genetic diversity and demographic history inAspidoscelis laredoensis, a diploid unisexual lizard species from the vicinity of the Rio Grande River in southern Texas and northern Mexico. The sexual progenitor species from which one or more lineages are derived also occur in the Rio Grande Valley region, although patterns of distribution across individual sites are quite variable. Results from population genetic and phylogenetic analyses resolved the major axes of genetic variation in this species and highlight how these match predictions based on historical patterns of hybridization. We also found discordance between results of demographic modelling using different statistical approaches with the genomic data. We discuss these insights within the context of the ecological and evolutionary mechanisms that generate and maintain lineage diversity in unisexual species. As one of the most dynamic, intriguing, and geographically well investigated groups of whiptail lizards, these species hold substantial promise for future studies on the constraints of diversification in unisexual vertebrates. 
    more » « less